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Abstract: Plasmalogens (Pls) are glycerophospholipids that play critical roles in the brain. Evidence
supports the role of diet and that of the gut microbiota in regulating brain lipids. We investigated the
impact of dietary intake of inulin—a soluble fiber used as prebiotic—on the Pl content of the cortex
in mice. No global modification in the Pl amounts was observed when evaluated by gas chromato-
graphic analysis of dimethyl acetals (DMAs). However, the analysis of individual molecular species
of Pls by liquid chromatography revealed a reduced abundance of major species of ethanolamine Pls
(PlsEtn)—PE(P-18:0/22:6) and PE(P-34:1)—in the cortex of mice fed a diet supplemented with inulin.
DMA and expression levels of genes (Far-1, Gnpat, Agps, Pla2g6 and Tmem86b) encoding key enzymes
of Pl biosynthesis or degradation were not altered in the liver and in the cortex of mice exposed to
inulin. In addition, the fatty acid profile and the amount of lyso forms derived from PlsEtn were not
modified in the cortex by inulin consumption. To conclude, inulin affects the brain levels of major
PlsEtn and further investigation is needed to determine the exact molecular mechanisms involved.

Keywords: dietary fibers; inulin; lipid; glycerophospholipid; plasmalogen; fatty acid; docosahexaenoic
acid; brain; cortex; liver

1. Introduction

The brain is the second-richest organ in terms of lipid content after adipose tissue.
Lipids account for about half of the dry weight of the brain and are essential components
in the structure and function of this organ [1–3]. The crucial role of lipids in maintaining
the health status of the brain is well illustrated by the existence of neurological disorders
(e.g., mood disorder, bipolar disorders and schizophrenia) and neurodegenerative diseases
(e.g., Alzheimer’s disease (AD) and Parkinson’s disease (PD)) that are associated with
alterations in lipid homeostasis in the brain [1,2]. In addition to displaying a high lipid
content, the brain is also characterized by a high lipid diversity, which relies mainly on fatty
acids [4,5]. In the brain, phospholipids are the reservoirs of fatty acids, and particularly
of arachidonic acid (ARA, C20:4n-6) and docosahexaenoic acid (DHA, C22:6n-3), which
are polyunsaturated fatty acids (PUFAs) involved in the regulation of the structure and
functions of brain cells [6,7]. Indeed, in addition to serving as an energy source, fatty acids
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also act as structural components of the cell membrane, and their derivatives are involved
in cell signaling processes [6].

One of the specific features of brain phospholipid composition is its enrichment in a
unique subclass of glycerophospholipids termed “plasmalogens” (Pls) [8]. Pls are character-
ized by a vinyl ether bond linking a long-chain fatty alcohol to the glycerol backbone in the
sn-1 position of glycerol instead of an ester bond as found in other glycerophospholipids.
The fatty alcohols in Pls are C16:0, C18:0 and C18:1 (n-7 or n-9). The fatty acid esterified at
the sn-2 position of glycerol is predominantly ARA or DHA. In the brain, the polar head at
the sn-3 position of the glycerol molecule is mainly ethanolamine. The brain has the highest
content of ethanolamine Pls (or plasmenyl-ethanolamine, PlsEtn), which account for more
than half of the total ethanolamine phospholipids in this tissue [8]. Pls can be derived from
dietary intake and/or can be endogenously synthesized in tissues [9–11]. Moreover, some
studies suggest that the liver might provide Pls for other tissues, but this concept remains
controversial. Indeed, the amount of Pls and the level of activity of enzymes involved in
their biosynthesis were found to be very low in the liver [8,12]. Pls are carried into the
blood via chaperone proteins, low-density lipoprotein (LDL) being the major carrier. Pls
are thereafter delivered to tissues through the LDL receptor pathway [13]. Studies suggest
that Pls and their precursors might cross the blood–brain barrier, but incorporation of
dietary Pls or their precursors in the brain does not seem to be as efficient when compared
to peripheral organs [14–16]. The endogenous synthesis of Pls in the brain is thought to
be the main source of brain Pls but this is still under debate [12,17]. The biosynthesis of
Pls starts in peroxisomes and ends in the endoplasmic reticulum (Figure 1). Critical steps
in Pl biosynthesis include the reduction of fatty acid to fatty alcohol by fatty acyl-CoA
reductase 1 (encoded by Far1), which is an enzyme located in the outer surface of the
peroxisomal membrane, and by the two peroxisomal enzymes DHAP-AT/DAP-AT (di-
hydroxyacetone phosphate acyltransferase, encoded by Gnpat) and alkyl-DHAP synthase
(alkylglycerone-phosphate synthase, encoded by Agps) [12].

Several functions and properties have been attributed to Pls. The high susceptibility of
the vinyl ether bond to oxidative damage has been described as a property of Pls that may
protect other lipids in cell membranes and lipoproteins against oxidative stress. However,
this hypothesis is controversial [18]. Pls also influence the physical and chemical properties
of biomembranes (e.g., fluidity, thickness and lateral pressure) and thereby cellular and
subcellular processes such as vesicle formation and membrane fusion events [17]. The
enrichment of “lipid rafts” with Pls may also affect the initiation of signal transduction
in membranes [19]. Pls are involved in the composition of glycosyl-phosphatidyl-inositol
anchors, a post-translational modification of membrane proteins [20]. In addition, they
constitute reservoirs of biologically active lipid mediators that are produced subsequently
to the release of ARA and DHA by phospholipase A2 hydrolysis [21,22]. Lysoplasmalogens
that are generated following the fatty acyl cleavage from Pls may also have biological
functions, both as precursors of Pls and as metabolites [21]. Pls have been identified as a
major structural component of the brain, and particularly of myelin and synaptic mem-
branes. They also modulate processes that are important for maintaining brain homeostasis
and functions such as neurotransmission, oxidative stress and neuroinflammation. The
important role of Pls in brain physiology is highlighted by the association of neurological
diseases/disorders with an abnormal composition or with abnormal levels of Pls or of en-
zymes involved in their biosynthesis [16]. In addition, beneficial effects of supplementation
with Pls/Pl precursors on brain functions have been reported, particularly in the context of
AD [11,23].
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Figure 1. Schematic representation of plasmalogen biosynthesis. The biosynthesis of plasmalogens
(Pls) is initiated in the peroxisome with three critical steps catalyzed by the enzymes FAR1 (fatty
acyl-CoA reductase 1), DHAP-AT (dihydroxyacetone phosphate acyltransferase) and alkyl-DHAP
synthase (alkylglycerone-phosphate synthase, AGPS). The biosynthesis of Pls is then continued
in the endoplasmic reticulum by additional enzymatic reactions leading to the synthesis of alkyl-
glycerophospholipid intermediates. The chemical structure of Pls is presented here. R1 denotes the
carbon chain at the sn-1 position, and R2 at the sn-2 position. The polar head group, denoted by X, is
most commonly choline or ethanolamine. acyl-CoA, acyl coenzyme A.

It is well documented that the gut microbiota influences the physiology of organs at
distance from the gut mucosa, including the nervous tissues [24,25]. In particular, there is
evidence that the gut microbiota modulates the lipid composition of both the brain and
the retina—the neurosensorial tissue that lines the back of the eye and that is known to
be an extension of the central nervous system. Indeed, analysis of the retinal lipidome of
germ-free mice and conventionally raised mice showed that the gut microbiota influences
the PlsEtn content of the retina [26]. In addition, comparison of the lipid profile of germ-
free mice colonized with the gut microbiota of young or old donor mice revealed that
the composition of the gut microbiota affects the cholesterol and phospholipid content of
the cortex, including phosphatidylcholine (PChol), phosphatidylethanolamine (PEtn) and
PlsEtn species [27].

Diet and the gut microbiota are intrinsically linked [28]. Among dietary factors shaping
the gut microbiota and influencing its functions is the consumption of dietary fibers [29].
Dietary fibers can be categorized according to their water solubility. Whereas insoluble
fibers (e.g., cellulose or hemicellulose) are poorly digested in the colon by the gut microbiota,
soluble fibers (e.g., inulin-type fructans) can be fermented by gut bacteria. The fermentation
of soluble fibers by bacteria generates metabolites (e.g., short-chain fatty acids (SCFAs))
that can have biological effects on the host, including effects on lipid metabolism [30]. A
lack of fibers has been shown to alter the composition, diversity and richness of the gut
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microbiota [31–33]. Soluble dietary fibers may influence the gut microbial ecosystem in
several ways. The consumption of soluble dietary fibers favors not only the expansion
of gut bacteria that are enzymatically equipped to degrade these substrates, but also
that of gut bacteria that will take advantage of the physicochemical changes associated
with the presence of fibers (e.g., acid environment) and/or benefit from the intermediate
products or metabolites arising from the fiber degradation. The influence of inulin on the
gut microbiota is particularly well documented. Data obtained from mouse models as
well as from studies of humans showed that inulin consumption is associated with the
expansion of bacteria that are described as conferring health benefits and with a reduction in
pathobionts [34–37]. Modulation of the host lipid metabolism is also associated with inulin
consumption. Indeed, effects of inulin on triglyceride and cholesterol blood levels have
been reported, but these findings are still controversial [38–40]. In addition, we recently
showed that supplementation of a low- or high-fat diet with inulin affects the fatty acid
content of mouse liver [34]. Although no direct causal relationship has been established,
some inulin-induced changes in the gut microbiota were correlated with modification of
the expression of genes encoding enzymes involved in fatty acid biosynthesis [34]. The aim
of this study was to investigate whether dietary intake of inulin affects the Pl content of
the brain. To this end, mice were exposed to a diet supplemented with either cellulose or
inulin. The abundance and the diversity of Pls were explored in the liver and the cortex of
mice through gas and liquid chromatographic techniques. The expression levels of the key
enzymes involved in Pl biosynthesis and cleavage/degradation were also determined.

2. Materials and Methods

2.1. Mice and Diets
For this study, 5-week-old male C57BL/6J mice were purchased from The Jackson

Laboratory (Bar Harbor, ME, USA). Mice were housed at Georgia State University, Atlanta,
GA, USA until euthanasia under institutionally approved protocols (Institutional Animal
Care and Use Committee IACUC #A18006). Mice were maintained on 12 h light:dark
cycles with ad libitum access to food and water. After 1 week of acclimation, mice were
randomly divided into two groups: a control group (CTRL; n = 12) received a purified
diet supplemented with 50 g cellulose/kg (Research Diet; #D12450J) and an inulin group
(INU; n = 11) received a purified diet supplemented with 200 g inulin/kg (Research Diet;
#D13081108) [34]. Cellulose as a source of fiber is generally poorly fermented by the gut.
The diet containing cellulose served as a control. The source of inulin was chicory (average
degree of polymerization � 23; Orafti® HP; BENEO-Orafti, Tienen, Belgium). Mice were
maintained on these respective diets for 11 weeks. Blood was collected by retrobulbar
venous plexus puncture in heparinized tubes and plasma was isolated after centrifugation
(1800⇥ g, 10 min, 4 �C). They were then euthanized by cervical dislocation and the cortex
and liver were collected.

2.2. Lipid Extraction and Determination of Fatty Methyl Ester and Dimetyl Acetal Profiles
Total lipids from cortex, plasma and livers were extracted using Folch’s procedure [41].

Boron trifluoride in methanol was used for transmethylation [42]. Hexane was used to
extract fatty acid methyl esters (FAMEs) and dimethyl acetals (DMAs). Analyses were
performed on a GC Trace 1310 (Thermo Scientific, Illkirch, France) gas chromatograph (GC)
using a CPSIL-88 column (100 m ⇥ 0.25 mm inside diameter, film thickness 0.20 µm; Agilent,
CA, USA). This device was coupled to a flame ionization detector (FID). The configuration
was: inlet pressure of hydrogen 210 kPa, oven temperature 60 �C for 5 min + 165 �C at
15 �C per min and upholding for 1 min, +225 �C at 2 �C per min and upholding at 225 �C
for 17 min. The injector and the detector were maintained at 250 �C. Comparisons with
commercial and synthetic standards enabled the identification of FAMEs and DMAs. The
ChromQuest 5.0 version 3.2.1 software (Thermo Scientific, Illkirch, France) was used to
process the data.
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2.3. Analysis of Phospholipid Molecular Species
The phosphorus content of the total lipid extract was determined according to the

method developed by Bartlett and Lewis [43]. The total phospholipids were dried un-
der a stream of nitrogen and diluted to the appropriate concentration of 500 µg/µL of
phospholipids in chloroform/methanol (CHCl3/CH3OH) (1:1, v/v). Ten microliters of
internal standard mixture containing PC(14:0/14:0) 320 µg/mL, PE(14:0/14:0) 160 µg/mL,
PS(14:0/14:0) 80 µg/mL, PI(8:0/8:0) 100 µg/mL and SM(d18:1/12:0) 80 µg/mL were added
into 200 µL of this phospholipid solution.

The process of identification and quantification of phospholipid species was performed
on a Thermo UltiMate™ 3000 coupled to an Orbitrap FusionTM Tribrid Mass Spectrometer
equipped with an EASY-MAX NGTM Ion Source (H-ESI) (Thermo Scientific, Waltham,
MA, USA).

Separation of phospholipid classes was achieved under hydrophilic interaction liquid
chromatography (HILIC) conditions using a Kinetex HILIC 100 m ⇥ 2.1 mm, 1.7 µm column
(Phenomenex, Sydney, Australia), with a flow of 0.5 mL/min. The mobile phase consisted
of (A) acetonitrile/water (CH3CN/H2O) (96:4, v/v) containing 10 mM ammonium acetate
and (B) CH3CN/H2O (50:50, v/v) containing 10 mM ammonium acetate. The chosen
solvent-gradient system of the analytical pump was as follows: 0 min 100% A, 12 min
80% A, 18 min 50% A, 18.1–30 min 100% A. The injection volume was 10 µL and the column
was maintained at 50 �C.

Phospholipid species were detected by high-resolution mass spectrometry (HRMS)
analysis. H-ESI source parameters were optimized and set as follows: ion transfer tube
temperature of 285 �C, vaporizer temperature of 370 �C, sheath gas flow rate of 35 au, sweep
gas of 1 au, auxiliary gas flow rate of 25 au. Positive and negative ions were monitored
alternatively by switching the polarity approach with a static spray voltage at 3500 V
and 2800 V in positive and negative mode, respectively. Mass spectra in full scan mode
were obtained using the Orbitrap mass analyzer with the normal mass range and a target
resolution of 240,000 (full width at half maximum (FWHM) at m/z 200), in a mass-to-charge
ratio m/z ranging from 200 to 1600 using a Quadrupole isolation in a normal mass range.
All mass spectrometry (MS) data were recorded using a maximum injection time of 100 ms,
automatic gain control (AGC) target (%) at 112.5, radio frequency lens (%) at 50 and one
microscan. An intensity threshold filter of 1.103 counts was applied.

For tandem mass spectrometry (MS/MS) analyses, the data-dependent mode was
used for the characterization of phospholipid species. Precursor isolation was performed
in the Quadrupole analyzer with an isolation width of m/z 1.6. Higher-energy collisional
dissociation was employed for the fragmentation of phospholipid species with an optimized
stepped collision energy of 27%. The linear ion trap was used to acquire spectra for fragment
ions in data-dependent mode. The AGC target was set to 2.104 with a maximum injection
time of 50 ms. All MS and MS/MS data were acquired in the profile mode.

The Orbitrap Fusion was controlled by XcaliburTM 4.1 software (Thermo Scientific,
Waltham, MA, USA). Data of high accuracy and the information collected from frag-
mentation spectra, with the help of the LipidSearchTM 2.0 software (Thermo Scientific,
Waltham, MA, USA) and the LIPID MAPS® database [44], were used for phospholipid
species identification.

2.4. Gene Expression
Total RNA was extracted using TRIzol reagent (Fisher Scientific, Illkirch, France).

Reverse transcription was performed with the PrimeScript RT reagent kit containing gDNA
Eraser (Takara Bio Europe, Saint Germain-En-Laye, France) and using 500 ng of total RNA.
Gene expression was determined by real-time polymerase chain reaction (PCR) using SYBR
Green (Bio-Rad, Marnes-La-Coquette, France) and a CFX96 Real-Time PCR system (Bio-
Rad, Marnes-La-Coquette, France). Hprt was used as the internal control for normalization.
Fold induction was calculated with the delta-delta Ct (ddCt) method. Primer sequences are
given in Table 1.
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Table 1. Primer sequences.

Genes (ID) Sense (5
0
-3

0
) Antisense (5

0
-3

0
)

Hprt (15452) CAGTCCCAGCGTCGTGATTA TGGCCTCCCATCTCCTTCAT
Far1 (67420) GCTCGGAAGCATCTCAACAAG GTGCTGGATGCTCGGAAGTAT

Gnpat (14712) TCACCGCAGCTACATTGACT GCAGCTCACTGACCACTCTC
Agps (228061) GTGCAGGGTGACACAGACTT CCATGGTGATGTGACAGGCT
Pla2g6 (53357) AAAGTCCCCTCAAGTGCCTG ACAGTCCACGACCATCTTGC

Tmem86b (68255) TGGGGTGCTGTGCTCTTTAC CACTAGGCGGGCAAAAGGTA
Cat (12359) CAACAGCTTCAGCGCACCAG GGCCGGCAATGTTCTCACAC

Gpx1 (14775) GGAATGCCTTGCCAACACCC GTCGATGGTACGAAAGCGGC
Nos2 (18126) AGAGCCACAGTCCTCTTTGC ACCACCAGCAGTAGTTGCTC
Sod1 (20655) GATGAAAGCGGTGTGCGTGC TGGACGTGGAACCCATGCTG
Cox-2 (19225) TTGCATTCTTTGCCCAGCAC TTAAGTCCACTCCATGGCCC

Sqstm1 (18412) TAAAAGCTGGGCTCTCGGCG CGTGAACGACGCCATAACCG

2.5. Statistical Analysis
Statistical analyses were performed using Prism 6 software (GraphPad Software Inc.,

San Diego, CA, USA). The non-parametric Mann–Whitney test was used to compare data
from the two groups. All p values of less than 0.05 were considered statistically significant
(* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001).

3. Results

3.1. Effect of Inulin on the Level of Total Pls in the Liver, in the Plasma and in the Cortex
The liver has been proposed as the primary organ of Pl biosynthesis. However, in

contrast to the brain whose Pl content is very high, the hepatic level of Pls is very low due
to a low storage rate and a high rate of export to other organs [8,12]. The amount of Pls
in the liver and in the cortex was measured by GC-FID. Acid-catalyzed transmethylation
of the aldehyde aliphatic groups from the sn-1 position of Pls resulted in the production
of DMAs (DMA 16:0, DMA 18:0, DMA 18:1n-7 and DMA 18:1n-9) whose amounts could
be determined concomitantly with FAMEs by GC-FID. As expected, we observed that
the amount of DMAs in the liver of control mice represented only 0.06% ± 0.005% of the
total FAMEs and DMAs (Figure 2a). Only one class of DMAs was detected: DMA 16:0
(Figure 2a). Supplementation of the diet with inulin did not modify the hepatic level of
DMA 16:0 (Figure 2a).

The level of total Pls was also measured in the plasma. As for the liver, the mean
level of DMAs in the plasma was low (0.80% ± 0.10% of total DMAs and FAMEs in CTRL
mice; Figure 2b). Inulin did not modify the total amount of DMAs in this transport fluid
(Figure 2b). However, the analysis at the species level revealed that the relative abundance
of the two DMA species detected in the plasma (DMA 16:0 and DMA 18:0) was modified
by inulin consumption: the plasma level of DMA 16:0 was significantly decreased and that
of DMA 18:0 significantly increased in the plasma of INU mice compared to CTRL mice
(Figure 2c,d).

In the cortex, the amount of total DMAs represented 9.24% ± 0.11% of the total
FAMEs and DMAs (Figure 2e). Four DMA classes were detected (Figure 2f–i). Among
DMAs, DMA 18:0 was the most widely represented (44.08% ± 0.51% of total DMAs in
CTRL mice, Figure 2g), followed by DMA 16:0 (23.34% ± 0.26%, Figure 2f), DMA 18:1n-7
(17.02% ± 0.31%, Figure 2h), and DMA 18:1n-9 (15.55% ± 0.18%, Figure 2i). No effect of
inulin was observed neither on the amount of total DMAs in the cortex nor on the amounts
of individual subclasses of DMAs (Figure 2e–i).
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dem mass spectrometry method (HPLC-MS2) analyses. Among them, five were alkyl-
glycerophospholipids (AKGs), which are intermediate molecules in the biosynthesis of 
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expected, the large majority (76.2%) of AKGs and Pls belonged to the ethanolamine 

Figure 2. Evaluation of plasmalogen (Pl) content in the liver, plasma and cortex by GC-FID. The
results represent the quantification of dimethylacetals (DMAs, derivatives of aldehyde aliphatic
groups from the sn-1 position of Pls) by GC-FID. (a,b,e) Results are expressed as percentages of total
DMAs relative to total fatty acid methyl esters (FAMEs) + total DMAs, defined as 100%, in the liver
(a), in the plasma (b) and in the cortex (e). (c,d,f–i) percentages of (c,f) DMA 16:0, (d,g) DMA 18:0,
(h) DMA 18:1n-7, and (i) DMA 18:1n-9 relative to total DMAs (defined as 100%), in the plasma (c,d)
and in the cortex (f–i). CTRL: mice fed a control diet. INU: mice fed a diet supplemented with inulin.
Data are presented in box and whisker plot format (median; min. to max.). Mann–Whitney test for
comparison of lipid abundance between CTRL and INU mice, * p < 0.05. GC-FID, gas chromatography
with flame-ionization detection.

These data indicate that, despite its effects on Pl classes in the plasma, inulin had no
impact on the total amount of Pls in the cortex.
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3.2. Impact of Dietary Supplementation with Inulin on the Plasmalogen Content of the Cortex
3.2.1. Overview of Plasmalogen Species

In the cortex, PlsEtn are the most abundant Pls [8,45]. A total of 102 glycerophos-
pholipid species were identified in the cortex of control mice by liquid chromatography-
tandem mass spectrometry method (HPLC-MS2) analyses. Among them, five were alkyl-
glycerophospholipids (AKGs), which are intermediate molecules in the biosynthesis of
Pls, and 16 were alkenyl-glycerophospholipids, namely, Pls (Figure 1 and Table 2). As
expected, the large majority (76.2%) of AKGs and Pls belonged to the ethanolamine subclass
(Table 2). PlsEtn represented 46.155 ± 1.303% of the overall ethanolamine glycerophospho-
lipid species. The three most abundant PlsEtn were PE(P-18:0/22:6), PE(P-16:0/22:6), and
PE(P-18:0/20:4), which represented 10.857 ± 0.530%, 5.189 ± 0.299%, and 5.001 ± 0.230%
of total ethanolamine glycerophospholipids in CTRL mice, respectively (Table 2).

Table 2. Relative amounts of alkyl-glycerophospholipid and plasmalogen species in the different
classes of glycerophospholipids measured in mouse cerebral cortex.

Glycerophospholipids Relative Abundance (%)

Ethanolamine glycerophospholipids

Alkyl-glycerophospholipids
PE(O-18:0/20:4) 0.619 ± 0.011
Plasmalogens
PE(P-16:0/16:0) 0.178 ± 0.011
PE(P-16:0/18:2) 0.233 ± 0.010
PE(P-16:0/20:3) 0.365 ± 0.014
PE(P-16:0/20:4) 1.546 ± 0.071
PE(P-16:0/22:6) 5.189 ± 0.299
PE(P-18:0/16:0) 0.715 ± 0.021
PE(P-18:0/20:4) 5.001 ± 0.230
PE(P-18:0/22:4) 2.084 ± 0.126
PE(P-18:0/22:6) 10.857 ± 0.530
PE(P-18:1/18:1) 4.206 ± 0.172
PE(P-18:1/20:4) 3.240 ± 0.109
PE(P-18:1/22:4) 2.250 ± 0.117
PE(P-18:1/22:6) 2.757 ± 0.187
PE(P-16:0/18:1); PE(P-18:1/16:0) * 3.855 ± 0.147
PE(P-16:0/20:1); PE(P-18:0/18:1) * 3.681 ± 0.164
Total PlsEtn 46.155 ± 1.303

Choline glycerophospholipids

Alkyl-glycerophospholipids
PC(O-32:0) 0.134 ± 0.011
PC(O-34:1) 0.361 ± 0.013
PC(O-16:0/20:4) 0.108 ± 0.004
Plasmalogens
PC(P-32:0) 0.125 ± 0.010

Inositol glycerophospholipids

Alkyl-glycerophospholipids
PI(O-16:0/20:4) 0.109 ± 0.004

For each glycerophospholipid class, results are expressed as abundance (in percentage) of each species relative to
that of total species, defined as 100%. Data are expressed as mean ± SEM. * based on ion precursor fragmentation
information given for both molecular ions according to their fatty acids moiety position. SEM, standard error of
the mean.

Among the other glycerophospholipids, we identified three AKG species in the choline
(AKGChol) and one in the inositol subclasses (Table 2). Only one Pl species, PC(P-32:0), was
detected in the class of choline glycephospholipids. This represented only 0.125 ± 0.010%
of total choline glycerophospholipids (Table 2).
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3.2.2. Impact of Dietary Inulin Supplementation on the Abundance of Plasmalogen Species
in the Liver and the Cortex

For each species and each glycerophospholipid class, we compared the abundance of
the individual species of AKGs and Pls in the cortex of INU mice relative to that of CTRL
mice (Figure 3).
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Whereas the abundance of the AKGEtn (AKG species in the ethanolamine subclass)
and AKGChol was unchanged, an 18.5% ± 6.0% increase in the abundance of PI(O-
16:0/20:4) was observed in the cortex of INU mice compared with CTRL mice (Figure 3a).
In addition, among the 15 PlsEtn species identified, two were significantly decreased in the
cortex of INU mice compared with CTRL mice (Figure 3b). Indeed, inulin supplementa-
tion was associated with a 20.5% ± 5.5% decrease in PE(P-18:0/22:6), which is the most
abundant PlsEtn species in the cortex, and with a 15.7% ± 6.8% decrease in PE(P-34:1)
[PE(P-16:0/18:1); PE(P-18:1/16:0)] (Figure 3b). The abundance of PlsChol was not modified
by inulin (Figure 3b).

Altogether, these results show that supplementation of the diet with inulin modifies
the abundance of specific AKG and individual Pl species in the cortex.

3.3. Effect of Inulin on the Expression of Genes Encoding Enzymes Involved in
Plasmalogen Biosynthesis

Fatty acyl-CoA reductase 1 (encoded by Far1), alkyl-DHAP synthase (encoded by
Agps), and DHAP-AT/DAP-AT (encoded by Gnpat) are key enzymes involved in Pl biosyn-
thesis (Figure 1). As their level of expression could be a factor modulating the amount of Pl,
we compared the mRNA levels encoding these enzymes in the liver (Figure 4a) and in the
cortex (Figure 4b) of INU and CTRL mice. As estimated by the comparison of the DeltaCt
(DCt), the expression levels of Far1, Agps and Gnpat in CTRL mice were significantly lower
in the liver than in the cortex (Appendix A Figure A1). Diet supplementation with inulin
did not modulate gene expression in either organ (Appendix A Figures 4 and A1).
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Figure 4. Effect of inulin on the expression of genes encoding enzymes involved in the biosynthesis
of plasmalogens. Liver (a) and cortex (b) expression of genes encoding fatty acyl-CoA reductase 1
(Far1), DHAP-AT/DAP-AT (Gnpat), and alkyl-DHAP synthase (Agps) in mice fed a control diet or
a diet supplemented with inulin. The levels of mRNA were normalized to Hprt mRNA level for
calculation of the relative levels of transcripts. mRNA levels are illustrated as fold change. Data are
presented in box and whisker plot format (median, min. to max.). Mann–Whitney test for comparison
of the level of each mRNA between CTRL and INU mice.

3.4. Modulation of the Fatty Acid Content of the Cortex by the Dietary Intake of Inulin
Another limiting factor that could have affected the amounts of PlsEtn PE(P-18:0/22:6)

and PE(P-34:1) [PE(P-16:0/18:1); PE(P-18:1/16:0)] in the cortex is the bioavailability of fatty
acids entering the biosynthesis of these lipid species. Therefore, we analyzed the fatty acid
composition of the cortex by GC-FID in INU mice compared with CTRL mice (Table 3).
We observed that inulin supplementation has a weak effect on the saturated fatty acid
(SFA) content of the cortex, since only the abundance of two minor SFAs (C15:0 and C17:0)
was significantly modified (Table 3). Among monounsaturated fatty acids (MUFAs), a
trend toward a decrease in the amount of total MUFAs of the n-7 series (p = 0.0572) and
a significant decrease in the abundance of C16:1n-7 were observed in the cortex of mice
exposed to inulin compared to those fed a control diet (Table 3). However, the dietary
intake of inulin modulated the abundance of several PUFAs in the cortex. The abundance
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of C22:5n-3, C18:2n-6 and C20:3n-6 was decreased whereas that of C22:5n-6 and C20:3n-9
was increased in the cortex of INU mice compared to CTRL mice (Table 3).

Table 3. Relative abundance of ester-linked fatty acids in the cortex.

Fatty Acids CTRL INU

Saturated fatty acids (SFAs)

C14:0 0.143 ± 0.004 0.136 ± 0.004
C15:0 *** 0.044 ± 0.001 0.059 ± 0.003

C16:0 22.033 ± 0.153 22.014 ± 0.167
C17:0 **** 0.146 ± 0.002 0.181 ± 0.006

C18:0 21.454 ± 0.081 21.471 ± 0.059
C20:0 0.273 ± 0.009 0.274 ± 0.006
C22:0 0.183 ± 0.006 0.181 ± 0.009
C24:0 0.207 ± 0.008 0.219 ± 0.017
Total 44.482 ± 0.170 44.535 ± 0.159

Monounsaturated fatty acids

(MUFAs)

C16:1n-7 ** 0.735 ± 0.016 0.671 ± 0.022
C18:1n-7 4.102 ± 0.042 4.038 ± 0.033
C20:1n-7 0.384 ± 0.013 0.364 ± 0.011
C16:1n-9 0.173 ± 0.002 0.167 ± 0.002
C18:1n-9 17.532 ± 0.170 17.534 ± 0.119
C20:1n-9 1.548 ± 0.057 1.574 ± 0.049
C22:1n-9 0.152 ± 0.005 0.148 ± 0.005
C24:1n-9 0.450 ± 0.019 0.454 ± 0.030

Total n-7 MUFAs (p = 0.0572) 5.221 ± 0.066 5.073 ± 0.056
Total n-9 MUFAs 19.854 ± 0.239 19.878 ± 0.188

Total MUFAs 25.076 ± 0.271 24.950 ± 0.216
Polyunsaturated fatty acids

(PUFAs)

C20:5n-3 0.062 ± 0.002 0.061 ± 0.002
C22:5n-3 * 0.168 ± 0.002 0.157 ± 0.003
C22:6n-3 15.360 ± 0.172 15.328 ± 0.111

C18:2n-6 ** 0.660 ± 0.022 0.570 ± 0.014
C20:2n-6 0.094 ± 0.005 0.088 ± 0.005

C20:3n-6 **** 0.463 ± 0.005 0.411 ± 0.010
C20:4n-6 10.598 ± 0.072 10.768 ± 0.074
C22:4n-6 2.551 ± 0.024 2.590 ± 0.020

C22:5n-6 * 0.303 ± 0.006 0.351 ± 0.023
C20:3n-9 ** 0.127 ± 0.003 0.141 ± 0.004

Total n-3 PUFAs 15.590 ± 0.171 15.546 ± 0.111
Total n-6 PUFAs 14.668 ± 0.083 14.778 ± 0.091

Total PUFAs 30.386 ± 0.249 30.466 ± 0.163
n-6 PUFAs/n-3 PUFAs 0.942 ± 0.006 0.951 ± 0.008

The percentage of each fatty acid methyl ester (FAME) relative to that of total FAMEs (100%) was determined.
Data are expressed as mean ± SEM. Mann-Whitney test for comparison of the abundance of each fatty acid
between control group (CTRL) and inulin group (INU) mice, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
SEM, standard error of the mean.

These results indicate that feeding mice an inulin-supplemented diet influences the
fatty acid content of the cortex. However, alterations induced by inulin did not concern
the fatty acids involved in the composition of PlsEtn PE(P-18:0/22:6) and PE(P-34:1) [PE(P-
16:0/18:1); PE(P-18:1/16:0], namely, C16:0, C18:0, C18:1 and C22:6n-3.

3.5. Influence of Inulin on the Production of Lyso-Glycerophospholipids in the Cortex
A decrease in the amounts of glycerophospholipids can result from an enhanced

production of metabolic intermediates termed “lyso-glycerophospholipids” that are gener-
ated by the release of the fatty acid esterified at the sn-2 position of the glycerol molecule
following the action of the enzyme phospholipase A(2) encoded by the Pla2g6 gene [46].
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The vinyl-ether bond of lysoplasmalogens can then be cleaved by the enzyme lysoplas-
malogenase encoded by the Tmem86b gene. As estimated by the analysis of the DCt levels,
the expression levels of these genes was significantly higher in the liver than in the cortex
(Appendix A Figure A1). We observed no modification of the expression levels of Pla2g6
and Tmem86b in liver and cortex of INU mice compared to CTRL mice (Figure 5).
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Figure 5. Effect of inulin on the expression of gene-encoding enzymes involved in the degradation
of plasmalogens. Liver (a) and cortex (b) expression of genes encoding phospholipase A(2) (Pla2g6)
and lysoplasmalogenase (Tmem86b) in mice fed a control diet or a diet supplemented with inulin.
The levels of mRNA were normalized to Hprt mRNA level for calculation of the relative levels of
transcripts. mRNA levels are illustrated as fold change. Data are presented in box and whisker
plot format (median, min. to max.). Mann-Whitney test for comparison of the level of each mRNA
between CTRL and INU mice.

Using HPLC-MS2, we analyzed and compared the amounts of lyso-ethanolamine
glycerophospholipids in the cortex of mice fed control or inulin-supplemented diet (Table 4).
In total, 21 species of lyso-phosphatidylethanolamine (LPEs) species were identified but no
lyso form of PlsEtn was detected (Table 4). No significant modification of the ratio of total
LPEs/total ethanolamine glycerophospholipids was observed in the cortex of CTRL mice
compared to that of INU mice (Table 4). In addition, we observed at the individual species
level that the INU diet affected the abundance of LPE 14:0 (Table 4).

Altogether, these results suggest that dietary intake of inulin is not associated with an
increase in LPEs in the cortex.

3.6. Influence of Inulin on Oxidative Stress-Related Mechanisms in the Cortex
As oxidative-stress-related molecules could cause Pl degradation by attacking their

vinyl-ether bond [47,48], we compared the expression level of a set of genes involved
in oxidative stress-related mechanisms: Cat encoding catalase, Gpx1 encoding for glu-
tathione peroxidase 1, Nos2 encoding for inducible NO synthase, Sod1 encoding for su-
peroxide dismutase (Cu-Zn), Cox-2 encoding for cyclooxygenase-2 and Sqstm1 encoding
for sequestosome-1 (ubiquitin-binding protein p62). As presented in Figure 6, we did
not observe any modification in the expression levels of these genes in the cortex of mice
from the INU group compared to CTRL mice, suggesting that oxidative stress-related
mechanisms were not modulated by inulin.
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Table 4. Relative abundance of lyso-phosphatidylethanolamine species in the cortex.

CTRL INU

a LPE 14:0 * 0.274 ± 0.053 0.259 ± 0.131
LPE 16:0 (p = 0.0576) 5.485 ± 0.553 4.438 ± 0.462

LPE 18:0 7.184 ± 1.712 5.552 ± 1.782
LPE 20:0 0.653 ± 0.044 0.522 ± 0.068
LPE 22:0 0.034 ± 0.004 0.032 ± 0.005
LPE 14:1 0.016 ± 0.004 0.026 ± 0.010
LPE 16:1 0.712 ± 0.051 0.652 ± 0.043
LPE 18:1 21.223 ± 0.722 21.005 ± 0.914
LPE 19:1 0.113 ± 0.009 0.121 ± 0.012
LPE 20:1 8.779 ± 0.396 8.129 ± 0.732
LPE 22:1 0.760 ± 0.046 0.695 ± 0.077
LPE 18:2 2.624 ± 0.502 2.463 ± 0.440
LPE 20:2 0.500 ± 0.049 0.513 ± 0.037
LPE 22:2 0.134 ± 0.011 0.127 ± 0.014
LPE 18:3 0.116 ± 0.013 0.136 ± 0.025
LPE 20:3 0.907 ± 0.078 0.938 ± 0.052
LPE 20:4 13.377 ± 0.520 14.498 ± 0.589
LPE 22:4 7.068 ± 0.830 8.058 ± 0.715
LPE 20:5 0.060 ± 0.008 0.059 ± 0.007
LPE 22:5 0.626 ± 0.045 0.750 ± 0.063
LPE 22:6 29.357 ± 1.145 31.032 ± 1.146

b LPEs/PEs 0.807 ± 0.273 1.096 ± 0.487
a The percentage of each lyso-phosphatidylethanolamine (LPE) species relative to that of total LPEs (100%) was
determined. b Ratio of total LPEs/total ethanolamine glycerophospholipids (PEs, non-plasmalogens). Total LPEs
and total PEs were calculated as the sum of the area under the peak of each species corrected with that of the
internal control (PE(28:0)). Data are expressed as mean ± SEM. * p < 0.05. Mann–Whitney test for comparison of
the abundance of LPE species or LPEs/PEs between CTRL and INU mice. SEM, standard error of the mean.
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Figure 6. Effect of inulin on the cortex expression of gene-encoding proteins involved in oxidative
stress-related mechanisms. Cat encodes catalase, Gpx1 encodes glutathione peroxidase 1, Nos2
encodes inducible nitric oxide (NO) synthase, Sod1 encodes superoxide dismutase (Cu-Zn), Cox-2
encodes cyclooxygenase-2, and Sqstm1 encodes sequestosome-1 (ubiquitin-binding protein p62).
The levels of mRNA were normalized to Hprt mRNA level for calculation of the relative levels of
transcripts. mRNA levels are illustrated as fold change. Data are presented in box and whisker plot
format (median; min. to max.). The Mann–Whitney test was used for comparison of the level of each
mRNA between CTRL and INU mice.
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4. Discussion

The brain is highly enriched in Pls, where they are essential in maintaining structure
(e.g., myelination) and homeostasis (e.g., anti-oxidative properties, regulation of inflam-
mation) as well as the functioning of specific processes (e.g., neurotransmission) [16]. It
is now well recognized that the lipid composition of the brain is modulated by the lipid
composition of the diet [49–53]. Thanks to the efforts made over the past decades to under-
stand the link between diet, gut microbiota, and host metabolism, it has become evident
that diet modulates not only host lipids by bringing lipids and their precursors to the host
but also by acting through the gut microbiota [54]. A body of evidence indicates that the
gut microbiota influences different aspects of host lipid metabolism as well as the lipid
composition of organs, including that of the brain [27,55–58]. In this study, we investigated
the effect of inulin, a soluble dietary fiber with prebiotic properties, on the content and
composition of Pls in the brain.

Determination of the DMA profile in the cortex of mice fed a control diet revealed that
Pls represent approximately 9.3% of total fatty acids in this brain structure and that they
are distributed into four classes (DMA 16:0, DMA 18:0, DMA 18:1n-7 and DMA 18:1n-9),
with DMA 18:0 and DMA 16:0 being the most abundant. These results are in agreement
with previous studies [59]. We found that the dietary supplementation with inulin did not
alter the DMA content or the distribution of DMAs into the different classes, suggesting
that dietary intake of this prebiotic does not affect the whole Pl content of the cortex, or the
distribution of Pls according to their sn-1 position.

In addition to the fatty alcohol moiety linked by a vinyl–ether bond at the sn-1 position
(whose trans-methylation yields the DMA derivatives), the diversity of Pl species is also
ensured by the fatty acid esterified at the sn-2 position as well as by the polar head group at
the sn-3 position of glycerol. Analysis by liquid chromatography coupled to MS/MS of the
diversity of glycerophospholipids in the cortex of mice enabled the identification of five
AKG species that are intermediate metabolites of Pl synthesis, as well as 16 species of Pls. As
reported in other studies, we observed that most of them (76.2%) were PlsEtn [8]. It has been
shown in the context of PlsEtn deficiency that the level of PEtn is adjusted to keep the level
of PlsEtn + PEtn constant [60]. In our study, no modification in the total amount of PlsEtn
or PEtn was observed in the cortex of mice fed an inulin-supplemented diet compared
to those fed a control diet. However, two Pl species were affected by supplementation
of the diet with inulin, namely, PE(P-34:1) [PE(P-16:0/18:1); PE(P-18:1/16:0)] and PE(P-
18:0/22:6), the latter being the most abundant Pl species of the cortex (10.9% of the PlsEtn).
Their abundance was decreased in the cortex of mice fed a diet supplemented with inulin
compared to those fed a control diet.

The inulin-dependent effect on PlsEtn could have deleterious effects on the brain
tissue since PE(P-18:0/22:6) constitutes a major reservoir of C22:6n-3 (DHA). Indeed, DHA
and its derivatives are essential for the development and maintenance of brain structure
and function [61]. Epidemiological studies also support a link between dietary intake
of DHA and the development of brain diseases and disorders such as AD [61,62]. In
addition, decreased amounts of PE(P-18:0/22:6) and PE(P-16:0/18:1) have been reported
in the cerebrum of patients with AD [63]. Potential harmful effects of inulin have already
been described. Dietary intake of inulin has been shown to aggravate colitis, exacerbate
atherosclerosis, enhance hepatic inflammation and fibrosis, disturb hepatic and bile acid
metabolism, and cause hepatocellular carcinoma in specific genetic contexts associated with
dysbiosis [39,64–67]. In addition, we have recently shown that although inulin prevents
some of the alterations in the hepatic fatty acid metabolism caused by chronic consumption
of a high-fat diet (HFD), it also exacerbates others [34]. Indeed, inulin consumption
prevented the HFD-induced increase in C16:1n-9 and C20:3n-6 as well as the HFD-induced
modulation of expression and/or activity of enzymes involved in fatty acid biosynthesis
(Elovl2, Elovl5 and FADS2) in mouse liver. However, this dietary fiber also exacerbated the
HFD-induced increase in the hepatic amount of C17:0.
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To expand our understanding of the mechanisms underlying the inulin-dependent
decrease in some Pl species in the cortex, we explored several hypotheses. Since the liver has
been proposed as the primary site of Pl biosynthesis, we investigated whether alterations
of Pls in the cortex could have a hepatic origin. To this end, we evaluated the DMA content
of the liver as well as the expression level of genes encoding key enzymes involved in the
initial three steps of Pl biosynthesis (Far1, Gnpat and Agps) and compared them between
mice fed a control diet and those fed an inulin-supplemented diet. Only DMA 16:0 was
detected in the liver of mice at very low levels, which is consistent with previous studies [8].
No effect of inulin was observed, neither on the DMA content nor on the expression levels
of Far1, Gnpat and Agps in the liver. This is in line with previous results showing no
modification in the expression levels and activities of enzymes involved in the biosynthesis
of fatty acids following inulin supplementation [34]. To go further in the exploration of a
hepatic origin for the changes we observed in the Pl content of the cortex, we analyzed
the Pls in the plasma. Indeed, we previously showed that the inulin supplementation,
as we provided in the diet of this study, induced changes in the composition of the gut
microbiota [34], and changes in the composition of the gut microbiota following inulin
consumption have been associated with serum Pl levels [68]. No modification of the total
DMA content was observed in the plasma of mice fed a diet supplemented with inulin.
However, intra-class modifications were observed: the relative abundance of DMA 16:0
was decreased and counterbalanced by an increase in DMA 18:0. Whereas this result might
account for the decrease in PE(P-34:1) [PE(P-16:0/18:1); PE(P-18:1/16:0] in the cortex, it
does not explain that in PE(P-18:0/22:6). Altogether, these data suggest that it is unlikely
that the Pl changes observed in the cortex have an extra-brain or hepatic origin.

Another hypothesis that could explain the decreased abundance of PlsEtn PE(P-
18:0/22:6) and PE(P-34:1) [(PE(P-16:0/18:1); PE(P-18:1/16:0)] in the cortex of inulin-fed
mice is a modulation of the endogenous biosynthesis of Pls. However, no modification in
the expression levels of Far-1, Gnpat and Agps was observed in the cortex of mice fed an
inulin-supplemented diet.

The bioavailability of the fatty acids in the cortex required for their biosynthesis was
also analyzed. We observed no modification in the abundance of C16:0, C18:0, C18:1n-7,
C18:1n-9 or C22:6n-3 in the cortex of mice fed an inulin-supplemented diet. However, the
level of docosapentaenoic acid (DPA) from the n-3 series (C22:5n-3), which is an intermedi-
ate between eicosapentaeinoic acid (EPA, C20:5n-3) and DHA (C22:6n-3), was decreased.
Finally, as the decrease in the abundance of some PlsEtn could also be the consequence of
their hydrolysis, the expression levels of enzymes involved in Pl cleavage/degradation and
the level of lyso species were evaluated. No modification of the expression level of Pla2g6
and Tmem86b genes, encoding phospholipase A(2) and lysoplasmalogenase, respectively,
was observed in mice fed an inulin-supplemented diet. Another cause of Pl degradation
could be an attack on the vinyl–ether bond by oxidative stress-related molecules [47,48].
To test this hypothesis, the level of oxidative stress as well as the amount of oxidized
derivatives of Pls should be evaluated. However, our results showed that dietary intake
of inulin did not modify the expression level of a set of genes involved in oxidative stress-
related mechanisms (Cox-2, Cat, Gpx1, Sod1, Nos2 and Sqstm1) in the cortex. In addition,
no lyso form of PlsEtn was detected in the cortex of mice fed a control diet or an inulin-
supplemented diet and no modification of the ratio of LPEs/PEs was observed in the cortex
of mice exposed to inulin. Taken together, these data suggest that the dietary intake of in-
ulin does not enhance glycerophospholipid hydrolysis. However, as intermediate products
arising from Pl degradation may only have a short-lived existence, further experiments
such as assessment of phospholipase A(2) and lysoplasmalogenase activities are needed to
rule out the existence of an impact of inulin consumption on PlsEtn degradation.

Finally, despite the use of compositionally controlled diets, we cannot exclude that the
amount of fiber consumed by mice fed an inulin-supplemented diet was different to that
of the control mice that received a cellulose-containing diet. Indeed, we have previously
reported that inulin supplementation can slightly decrease food consumption, very likely
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linked to the energy provided by fermentable fiber compared to non-fermentable fiber [32].
More importantly, the dose of inulin used in the current study is relatively high and cannot
be transposed to human nutrition. Hence, future studies appear warranted to investigate
the effect of lower doses of inulin on cortex Pls.

5. Conclusions

In this study, we showed that dietary supplementation with inulin do not modify the
global amount of Pls in the cortex of mice but affects its content at the species level. In
particular, dietary intake of this prebiotic induces a decrease in the abundance of the most
widely represented PlsEtn species, PE(P-18:0/22:6), which represents a major reservoir of
DHA, a fatty acid essential for brain development and function. This study joins others
that suggest inulin may have deleterious effects. The consequences of these alterations on
the physiology and the functioning of the brain, as well as the molecular mechanisms that
link inulin/gut microbiota and Pl levels in the brain, remain to be elucidated.
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Figure A1. Expression levels of genes encoding enzymes involved in the biosynthesis (a) or in the
degradation (b) of plasmalogens in liver and cortex of mice fed a control diet or a diet supplemented
with inulin. (a) Expression levels of genes encoding fatty acyl-CoA reductase 1 (Far1), DHAP-
AT/DAP-AT (Gnpat), and alkyl-DHAP synthase (Agps). (b) Expression levels of genes encoding
phospholipase A(2) (Pla2g6) and lysoplasmalogenase (Tmem86b). DeltaCt (DCt) are presented as
mean ± SEM. #, p < 0.0001, Mann–Whitney test for comparison between DCt in liver and DCt in
cortex of control group (CTRL) mice. $, p < 0.0001, Mann–Whitney test for comparison between DCt
in liver and DCt in cortex of inulin group (INU) mice. acyl-CoA, acyl coenzyme A; SEM, standard
error of the mean.
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Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the 
course of evolution, forming an interkingdom consortium. The gut offers a 
favorable ecological niche for microbial communities, with the whole body and 
external factors (e.g., diet or medications) contributing to modulating this 
microenvironment. Reciprocally, the gut microbiota is important for maintaining 
health by acting not only on the gut mucosa but also on other organs. However, 
failure in one or another of these two partners can lead to the breakdown in their 
symbiotic equilibrium and contribute to disease onset and/or progression. Several 
microbial and host processes are devoted to facing up the stress that could alter 
the symbiosis, ensuring the resilience of the ecosystem. Among these processes, 
autophagy is a host catabolic process integrating a wide range of stress in order to 
maintain cell survival and homeostasis. This cytoprotective mechanism, which is 
ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-
regulated at the transcriptional, post-transcriptional, or post-translational levels, 
to respond to various stress conditions. Because of its sensitivity to all, metabolic-, 
immune-, and microbial-derived stimuli, autophagy is at the crossroad of the 
dialogue between changes occurring in the gut microbiota and the host responses. 
In this review, we first delineate the modulation of host autophagy by the gut 
microbiota locally in the gut and in peripheral organs. Then, we describe the 
autophagy-related mechanisms affecting the gut microbiota. We conclude this 
review with the current challenges and an outlook toward the future 
interventions aiming at modulating host autophagy by targeting the gut 
microbiota.
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Core Tip: We are now aware that maintaining a fine equilibrium between the host and 
its gut microbiota is a prerequisite to maintain host homeostasis and promote long-term 
health. Several host and microbial processes interact dynamically to respond to 
external stresses. Among these processes, host autophagy acts as a cytoprotective 
mechanism responsive to a wide range of stress conditions, including metabolic, 
immune, and microbial stimuli. Autophagy was initially described as a degradative 
process active upon nutrient starvation. However, this process fulfils a wide range of 
other functions that are essential to host homeostasis. We discuss herein reciprocal 
interactions of autophagy with the gut microbiota in health and disease conditions.
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INTRODUCTION
The commensal microbiota living in the human gut is a unique ecosystem that has co-
evolved with human to establish a symbiotic relationship. This microbial community 
is estimated to encompass about 1014 resident microorganisms, dominated by bacteria, 
but containing also populations of archaea, fungi, protozoa, and viruses[1]. The host 
provides nutrients and a favorable environment (i.e., ecological niches) for its 
microbial inhabitants. In return, the gut microbiota plays multiple roles that contribute 
to the host whole-body homeostasis, in particular by metabolizing dietary nutrients, 
by preventing colonization by enteric pathogens, and by regulating the host immune 
system and metabolism. The gut microbiota is, for instance, essential for the synthesis 
of vitamins (e.g., K and B-group vitamins) and the fermentation of dietary fibers and 
carbohydrates, which generate short-chain fatty acids (SCFAs). These fermentation 
products are used as energy source by organs and are also involved in the regulation 
of various cellular processes (e.g., intestinal barrier integrity, mucus production, and 
inflammation)[2,3].

Through their interactions with the host, gut microbes and their derived products 
are involved not only in the physiological regulation of the gut mucosa but also in that 
of organs located at distance from the gut mucosa, as illustrated by the studies 
detailing molecular features of the gut-microbiota-brain axis[4-6]. Keeping the 
mutualistic relationship between the gut microbiota and the host throughout host’s life 
is thus essential to maintain the health status of the host[7]. Deleterious shifts in the 
composition of the gut microbiota, called dysbiosis, can unbalance its functions, 
leading to the disruption of host homeostasis. This is particularly well illustrated by 
the ability of fecal microbiota transplantation (FMT) to transmit detrimental metabolic 
and/or pro-inflammatory traits from a sick donor to healthy recipient mice[8-10]. In 
addition to environmental stresses, the symbiotic equilibrium of the gut microbiota 
and the host can also be broken by dysfunctions/alterations in the host metabolism 
and immune system, which are conditions that can contribute to dysbiosis[8,11,12]. In 
this context, the roles of autophagy in strengthening the intestinal barrier and in 
maintaining host metabolic and inflammatory balance position it as the cornerstone of 
the symbiotic relationship between the gut microbiota and the host[4,13].

Macroautophagy/autophagy is an intracellular and multistep process starting with 
the formation of a membranous cup-shaped structure, called phagophore, which 
engulfs portions of the cytoplasm. The phagophore elongates and finally closes to 
form a sealed double-membraned vacuole, called autophagosome, whose maturation 
ends by its fusion with lysosomes[14-16]. Autophagy was initially described as a 
lysosomal catabolic process occurring under starvation that degrades and recycles 
cytoplasmic macromolecules (e.g., proteins, lipids, and carbohydrates) for the biosyn-
thesis of essential cellular components and to restore energy balance[17]. Nowadays, 
autophagy process and autophagy-related proteins are recognized as key cellular 
components whose roles are not restricted to the regulation of energy balance[18,19]. 
These roles include, but are not limited to, the regulation of the inflammatory 
response, the cytoprotection by preventing the accumulation of intracellular waste (
e.g., damaged organelles and misfolded or aggregated proteins), the protection against 
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intracellular pathogens (e.g., bacteria, fungi, or viruses), the membrane dynamic (e.g., 
transport or secretion), and the regulation of cell differentiation and survival. 
Autophagy also regulates specific functions related to the features of organs. For 
example, at the gut mucosa - the first tissue at the interface between the gut microbiota 
and the host - autophagy is involved in the regulation of the functions of the secretory 
cells and of the intestinal stem cell[4]. In the central nervous system, autophagy plays 
roles in neuronal development and survival and other various functions[20]. The 
central role of autophagy in maintaining homeostasis, and thus the health status, is 
supported by the observed embryonic or neonatal lethality of mice deficient for most 
autophagy-related (Atg) core genes (Becn1, Vps34, Atg9a, Ulk1/2, Atg3, Atg5, Atg7, and 
Atg16l1) as well as association of numerous diseases and disorders with autophagy 
defects[19,21].

Of note, a growing number of recent studies highlight that most of the proteins of 
the autophagy machinery also mediate autophagy-independent functions, including 
phagocytosis, exocytosis, cytokinesis, DNA repair, or innate and adaptive immune 
signaling[22]. To exert their numerous functions, the machineries involving autophagy 
proteins are intricated with molecular sensors specialized in the detection of various 
stimuli such as microbial sensors [e.g., Toll-like receptors (TLR) and Nod-like receptors 
(NLR)], stress sensors (e.g., HMGB1, Sestrins, ER-stress sensor proteins, P2XR, and 
cGAS-STING pathway), or energy status sensors (e.g., AMPK and mTOR pathways)
[23-29].

In this review, we summarize the current knowledge on how the gut microbiota 
influences host autophagy locally in the gut mucosa or remotely in peripheral organs 
(brain, heart, liver, or muscles), and how autophagy or autophagy-related proteins can 
reciprocally shape the gut microbiota composition and modify its functions (Figure 1). 
We finally discuss the potential of targeting the gut microbiota as a strategy to 
modulate autophagy or restore its functionality in pathological context.

INFLUENCE OF THE MICROBIOTA ON GUT AUTOPHAGY
A first clue that points out a direct implication of the gut microbiota in the regulation 
of host autophagy has been provided by analyzing autophagy in germ-free mice (i.e., 
mice lacking microorganisms and bred in isolators without any microbial exposure). 
Basal autophagy was decreased in the colonic epithelium of germ-free mice compared 
to conventionally raised mice, suggesting that the gut microbiota influences intestinal 
autophagy in physiological condition[30]. The increase in basal activity of autophagy 
in germ-free mice was attributed to an energy-deprived status of colonocytes. 
Treatment of these cells with butyrate, a SCFA generated by some gut bacteria and 
serving as main energy source for colonocytes, was sufficient to reverse the phenotype. 
In vivo, colonization of germ-free mice with the butyrate-producing bacterial strain 
Butyrivibrio fibrisolvens was sufficient to restore autophagy steady state. In addition to 
butyrate, other bacteria-derived metabolites may have the ability to reduce basal 
autophagy in the colon. They include indole-3-lactate, which is a tryptophan 
metabolite produced notably by the bacteria belonging to the Lacticaseibacillus, Lactoba-

cillus, Bifidobacterium, Megamonas, Roseburia, or Ruminococcus genus[31,32].
Pathogen-associated molecular patterns (PAMPs), which are conserved microbial 

molecules, are also able to modulate autophagy usually by stimulating the process
[23]. These effects have been particularly well described for pathogens. PAMPs mainly 
act by interacting with specific host cell receptors that belong to the TLR and NLR 
families. This has been illustrated by the ability of the lipopolysaccharide (LPS) from 
Gram negative bacteria to stimulate autophagy through its binding to TLR4[33], or the 
peptidoglycan (PGN) from Gram positive bacteria through NOD1-, NOD2-, and TLR2-
associated signaling[34,35]. Besides those of bacteria, fungal PAMPs can also mobilize 
components of the autophagy machinery. This is true for β-glucans that are found in 
fungal cell walls and stimulate autophagy-related processes though their binding to 
the host receptor Dectin-1[36,37]. Trehalose, a non-reducing disaccharide produced by 
bacteria and fungi, is also a potent autophagy inducer, for which the ability to 
stimulate colonic autophagy during colitis in mice has been described[38,39]. In 
addition, in-depth studies of the infectious cycle of some pathogenic bacteria have 
shed the light on the existence of secreted bacterial effectors able to activate (e.g., Ats-1 
protein from Anaplasma phagocytophilum) or inhibit (e.g., RavZ protein from Legionella 

pneumophila) autophagy at various stages of the process[40,41]. It is not excluded that 
some commensal microorganisms in the gut express such proteins that influence host 
autophagy.
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Figure 1 Complex interplay between gut microbiota and autophagy. The interactions between the gut microbiota and autophagy are bidirectional. 
Autophagy is involved in the regulation of several mechanisms (grey boxes) that shape the gut microbiota. Reciprocally, some bacterial- (blue), fungal- (orange), or 
viral-derived (pink) compounds are able to modulate autophagy in the gut mucosa as well as in distant organs through systemic pathways (circulatory system, 
nervous system …). Modulation of autophagy by the gut microbiota involves microbiota-derived products such as microbial compounds (lipopolysaccharide, 
peptidoglycan …), microbial derived-compounds (short chain fatty acids, secondary biliary acids …), or signaling molecules (cytokines, hormones ...). They stimulate 
a wide range of host molecular sensors (pattern recognition receptors, stress sensors, and energy sensors; grey hexagons) located in the gut or peripheral organs. 
PRR: Pattern recognition receptor; TLR: Toll-like receptor; NLR: Nod-like receptor.

Given the influence of gut microbiota-related factors on autophagy, one could 
expect that alterations in the composition of the gut microbiota would affect 
autophagy in the gut mucosa. Indeed, an increase in the expression of some 
autophagy-related proteins (FoxO1, FoxO3, GABARAP, and ATG7) and LC3-II/LC3-I 
ratio and a decrease in AKT activation have been reported in newborn piglets 
receiving FMT[42]. In addition, alteration of the gut microbiota resulting from the 
administration of a cocktail of broad-spectrum antibiotics increased the basal activity 
of autophagy as well as the expression of some autophagy-related proteins (ATG16L1, 
ATG5, and IRGM1) in the ileal mucosa of mice[43,44]. Interestingly, oral adminis-
tration of a single bacterial species (e.g., Desulfovibrio spp., Fusobacterium nucleatum, or 
Escherichia coli) in conventional mice can also be sufficient to modulate gut autophagy
[42,44,45]. Altogether, these studies suggest that autophagy regulatory network is 
sensitive to changes in the gut microbiota.

SYSTEMIC EFFECTS OF THE GUT MICROBIOTA ON HOST AUTOPHAGY
Microbial-derived metabolites (e.g., PAMPs), compounds that are issued from the gut 
microbiota metabolism (e.g., neuroactive compounds and SCFAs) and host bioactive 
molecules that are produced in response to its interaction with the gut microbiota (e.g., 
cytokines), can have large systemic effects and modulate the physiology of organs that 
are distant from the gut. Influence of the gut microbiota on the brain is a well-
documented example of such effects[6]. Several communication routes (immune 
system, autonomic nervous system, neuroendocrine system, hypothalamic – pituitary 
– adrenal axis, and other metabolic pathways) between the microbiota and the brain 
have been identified[6]. It is very likely that similar pathways and microbiota-derived 
players, or at least some of them, modulate as well the physiology of other organs in 
the body. Evidence is accumulating on the modulation of autophagy by the gut 
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microbiota in distant organs and several of these are presented below (Table 1).

Modulation of autophagy in nervous tissues
Although few studies are available on this emerging topic, they suggest that the gut 
microbiota could influence autophagy in the brain throughout life in both 
physiological and pathological conditions.

Diet is a key environmental factor that drives the composition and metabolic 
functions of the gut microbiota[46,47]. In particular, maternal diet can influence post-
natal gut microbiota and neurological development of the offspring[48]. In a recent 
study, Wang and colleagues reported that feeding mothers with a high sugar and high 
fat (HSHF) diet, a condition that modifies the gut microbiota of the offspring, 
modulates also the expression of neuronal and autophagy markers in the brain during 
early life stage[49]. Particularly, they observed that the LC3A and LC3B levels were 
modified in the brain of the offspring in the HSHF group compared to controls before 
28 d of age, and then decreased, meaning that autophagy may be differentially 
regulated in HSHF offspring[49].

Aging is associated with a decline of host autophagy including in the brain[50]. 
Influence of the gut microbiota on brain autophagy in aging has been evidenced in in 

vivo models. Alteration of autophagy has been reported in the brain of D-gal-treated 
mice, a model of accelerated aging[51,52]. These alterations were characterized by 
decreases in the LC3-II/LC3-I ratio and in the expression of ATG7 and SIRT1, as well 
as by increased phosphorylation of the master negative regulator of autophagy mTOR 
(S2448) and expression of p62 in the hippocampus tissue of D-gal-induced aging mice
[52]. Interestingly, the administration of urolithin A (UA), a bioactive metabolite 
generated by the gut microbiota, was efficient in rescuing these autophagy-related 
defects. To note, UA administration also allowed to reverse increases in the LC3-
II/LC3-I ratio, the expression of p62, and the phosphorylation of mTOR (S2448), as 
well as the decreased expression of Sirt-1 and ATG7 observed in the hippocampus of 
12-mo-old mice[52].

Autophagy defect is thought to play a role in neurodegenerative processes 
associated with numerous diseases, including Alzheimer’s disease (AD)[53]. 
Interestingly, although a causal relationship remains to be demonstrated, a few studies 
suggest that dysbiosis associated with AD could influence brain autophagy[54]. 
Decreased Beclin-1 expression and increased expression of p62 have been observed in 
the brain of old 3xTg-AD mice (a transgenic mouse model of AD) compared to young 
control mice, indicating alterations in autophagy[55]. Interestingly, in addition to 
modifying the composition and predicted function of the gut microbiota, oral supple-
mentation of old 3xTg-AD mice with a combination of nine probiotic strains (Strepto-

coccus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, 
Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus delbrueckii subsp. 
bulgaricus, and Levilactobacillus brevis; SLAB51 formulation) also partially restored 
defects in autophagy[55]. Moreover, SLAB51 was also effective in restoring the 
impaired expression level and activity of SIRT1, a positive regulator of autophagy, in 
the brain of 3xTg-AD mice[56,57].

In another context, changes in the composition of the fecal microbiota have been 
reported in patients with acute ischemic stroke (AIS), a common cerebrovascular 
disease caused by sudden loss of blood circulation in a specific brain area[58,59]. 
Interestingly, anal administration of the fecal supernatant obtained from an AIS 
patient to antibiotics-treated mice resulted in increased expression of genes encoding 
Beclin-1, ATG12, and LC3 as well as increased expression of Beclin-1 at the protein 
level and an increased level of LC3-II in brain tissue compared to antibiotics-treated 
mice that received the fecal supernatant of healthy controls[59].

The retina, which is the light sensitive neural tissue that lines the back of the eyes, 
displays numerous similarities with the brain either anatomically or functionally[60]. 
Neurodegenerative conditions that affect the brain seem to compromise the retina, and 
vice versa[60-62]. Similarly to the brain, the retina is also highly sensitive to nutritional 
variations[63]. Retina autophagy[64,65] as well as modifications in the gut microbiota
[66-69] is suspected to contribute to retinal diseases such as diabetic retinopathy, age-
related macular degeneration, and glaucoma. Although no causal relationship has 
been yet established, one can assume that, as in the brain, the gut microbiota might 
influence retinal autophagy and that changes in its composition might alter retinal 
autophagy and contribute to the development of retinopathies.

Modulation of liver autophagy 
Evidence of the influence of the gut microbiota on liver autophagy came from studies 
in gut microbiota-deprived mouse models. Comparison of germ-free mice and altered 
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Table 1 Data supporting the existence of a systemic regulation of autophagy by the gut microbiota

Impact on autophagy
Ref.

Brain Liver Muscles

[49,74-
76]

Diet-induced 
changes in the gut 
microbiota

Feeding of mother mice with an HSHF diet: Changes 
in the expression levels of LC3A-I/LC3A-II/ LC3B-
I/LC3B-II in the offspring.

Feeding mice or rats with an HF diet: Changes in the expression levels of LC3, 
p62, mTOR, and p-AKT and modulation of the LC3-II amount. 

AD mice1: Modulation of the lysosomal activity 
(Cathepsin L) and SIRT1 activity and changes in the 
expression levels of Beclin-1, p62, and SIRT1.

ASF colonized mice: Changes in the expression of a set of genes related to 
autophagy/membrane trafficking (Uvrag, Atg14, Becn1, Bcl2l1, and Pik3c3) and 
lysosomal functions (Chmp4c and Chmp2a) compared to germ-free mice.

[55,56,
59,70]

Mice with specific 
gut microbiota

FMT from patients with AIS to mice: Changes in the 
expression levels of Becn1, ATG12, and LC3 
expression and in the amount of LC3-II.

[71,79] Germ free or 
antibiotic-treated 
animals

Antibiotic treatment of mice fed a normal diet: Alteration of the basal expression 
of LC3 compared to controls.

Germ free piglets: Changes in the expression levels of LC3A, 
LC3B, and Becn1 and of mTOR, p-mTOR, AKT, and p-AKT 
levels compared to normal and/or FMT piglets.

[55,56,
75,76,
78]

Probiotics SLAB512: Modulation of SIRT1 activity and changes 
in the expression levels of Beclin-1, p62, and SIRT-1 as 
well as in the LC3-II amount in AD mice1.

Limosilactobacillus reuteri: Modulation of the expression levels of mTOR and p-
AKT in HFD-fed rats. 

Lacticaseibacillus rhamnosus, Pediococcus acidilactici, Bifidobacterium 

adolescentis: Changes in the expression levels of LC3 and ATG7 
in rats fed a high-calorie diet.

SCFAs: Activation of the PPARγ-UCP2-AMPK pathway, and induction of 
autophagy flux and lysosomal activity in mouse hepatocyte AML-12 cells. 

UA: Induction of mitophagy in Caenorhabditis elegans and in 
rodents.

[52,71,
74,77,
80]

Gut microbiota-
derived products

UA: Modulation of LC3-II/LC3-I and p-
mTOR/mTOR ratio and changes in the expression 
levels of ATG7 and p62 in mouse models of aging3.

FXR and TGR54: Involved in autophagy modulation. UB: Modulation of LC3-II/LC3-I, p-mTOR/mTOR and p-
ULK1/ULK1 ratio and change in the expression level of p62 in a 
rat model of ischemia/reperfusion injury.

1AD mice: Mouse model of Alzheimer’s disease (3xTg-AD mice).
2SLAB51: A combination of nine probiotic strains (Streptococcus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus delbrueckii subsp. bulgaricus, 
and Levilactobacillus brevis).
3D-gal-treated mice and 12-mo-old mice.
4FXR and TGR5: Bile acid receptors.
HSHF diet: High sugar and high fat diet; HF diet: High fat diet; FMT: Fecal microbiota transplantation; SCFAs: Short chain fatty acids (propionate and butyrate); AIS: Acute ischemic stroke; ASF: Altered Schaedler’s flora; UA: Urolithin A; 
UB: urolithin B.

Schaedler’s flora (a community of eight bacterial species) colonized mice revealed that 
absence of the gut microbiota altered hepatic expression of genes involved in 
autophagy and lysosomal functions[70]. In another study, a decrease in the expression 
of LC3 at the protein level has been reported in the liver of mice deprived from gut 
microbiota as a consequence of chronic treatment with antibiotics (ampicillin and 
neomycin) compared to control mice[71]. In addition, those authors showed that 
microbial-derived SCFAs (propionate and butyrate) activated autophagy, induced 
lysosomal activity, and increased autophagy flux in vitro in mouse hepatocyte AML-12 
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cells[71]. The mechanism involves the activation of the PPARγ-UCP2-AMPK pathway
[71].

Primary bile acids are synthesized from cholesterol in the liver and are converted 
into secondary bile acids by the gut microbiota[72]. Bile acids are signaling molecules 
that can activate nuclear hormone receptors including FXR and TGR5 (also known as 
GPBAR1), which is a cell-surface receptor of the G protein-coupled receptor family
[73]. These two bile acid receptors have been described to modulate autophagy in the 
liver and adipose tissue in fed and fasted states[74].

Several alterations of autophagy, including a decreased amount of LC3 mRNA and 
LC3-II and an increased amount of p62, have been observed in the liver of mice fed a 
high-fat diet (HFD), a potent inducer of dysbiosis[74]. Chronic exposure of rats to an 
HFD can lead to NASH (non-alcoholic fatty steatohepatitis). Development of this liver 
disease has been associated with dysbiosis and alterations in autophagy, particularly 
increased expression of hepatic mTOR and p-AKT[75,76]. Interestingly, supple-
mentation of an HFD with a probiotic strain (Limosilactobacillus reuteri) and/or 
treatment of NASH mice with antibiotics (metronidazole) tended to normalize the 
hepatic content of these two autophagy-related proteins, as well as SCFAs and 
Firmicutes and Bacteroidetes fecal contents, thus suggesting a role of the gut microbiota 
in the modulation of hepatic autophagy[75,76]. To note, some data suggest a role for 
TGR5 in the regulation of autophagy in response to HFD[74].

Modulation of autophagy in muscle tissues 
An induction of autophagy, characterized by decreased phosphorylation of mTOR 
(S2448) and ULK1 (S757), an increased amount of LC3-II, and decreased expression of 
p62, has been reported in a rat model of ischemia/reperfusion injury[77]. Interestingly, 
intraperitoneal injection of urolithin B (UB), a gut microbiota-derived metabolite, was 
able to reverse this phenotype[77].  The inhibitory effect of UB on autophagy is 
thought to activate the Nrf2-related antioxidant response by increasing p62 accumu-
lation and favoring p62-Keap1interaction[77]. Another argument that suggests the 
influence of the gut microbiota on heart autophagy has been provided by changes in 
the expression levels of LC3 and ATG7 observed in heart tissue of rats fed a high-
calorie diet supplemented with probiotics (Lacticaseibacillus rhamnosus, Pediococcus 

acidilactici, and Bifidobacterium adolescentis)[78].
In addition to the heart, autophagy might be regulated by the gut microbiota in 

other muscles. Recently, high-throughput RNA-seq analysis revealed that the 
expression levels of autophagy-related genes (LC3A, LC3B, and Beclin-1) were 
modulated in the skeletal muscles of germ-free piglets compared to control piglets
[79]. Moreover, germ-free piglets harbored decreased expression of mTOR and AKT 
and their phosphorylated forms, phospho-mTOR (S2448) and phospho-AKT (S473), 
respectively, compared to control piglets[79]. FMT of germ-free piglets with stools 
collected on healthy donors pigs was effective in restoring the amounts of phospho-
AKT and mTOR to a level similar to that of controls[79]. Some microbial-derived 
metabolites able to influence the muscle autophagy have been identified. For example, 
a role of UA as a mitophagy (selective degradation of mitochondria by autophagy) 
inducer in the muscle tissue has been described in the model organism Caenorhabditis 

elegans and in rodents[80].

SHAPING OF THE GUT MICROBIOTA BY AUTOPHAGY
As developed in the first part of this review, the gut microbiota is able to influence 
host autophagy by several pathways and through complex regulatory networks 
governing the autophagy machinery. Reciprocally, autophagy and autophagy-related 
proteins can shape the gut microbiota (Figure 1). This is particularly well illustrated by 
changes in the gut microbiota composition observed in mice conditionally deficient for 
autophagy (Atg5-/-, Atg7-/-, and ATG16L1 T300A knock-in) in the gut[81-83]. 
Interestingly, alterations of autophagy in peripheral organs such as the liver have been 
shown to influence the composition of the gut microbiota[84].

A first overall reason that would explain why autophagy activity in the gut mucosa 
can modulate the abundance of gut microorganisms is that this process is essential to 
maintain homeostasis of their ecological niche. Indeed, basal autophagy is crucial to 
maintain the integrity of Lgr5-positive intestinal stem cells that give rise to all differen-
tiated lineages of the intestinal epithelium throughout life[85]. In addition, autophagy 
contributes to the maintaining of intestinal barrier integrity, particularly by regulating 
proteins involved in tight junctions (e.g., Claudin-2 and Occludin) on the apical side of 
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intestinal epithelial cells and by promoting cell survival upon various stress (e.g., 
bacterial or viral infection, inflammation, or chemical stress)[4,86-88].

The main cellular mechanisms by which host autophagy shapes the gut microbiota 
(including pathosymbionts) are described below.

Clearance of pathogens
Autophagy mediates the bulk or selective lysosomal degradation of cellular 
components. In selective autophagy, selective autophagy receptors (SARs) recognize 
and bind specific cargoes to promote phagophore formation around them, ultimately 
leading to their degradation into a mature autolysosome. These specific cargoes can be 
for instance mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates 
(aggrephagy), or peroxysomes (pexophagy)[89]. A selective form of autophagy termed 
xenophagy is dedicated to the elimination of intracellular pathogens (e.g., bacteria, 
viruses, fungi, or protozoa) and is supported by the expression of several SARs 
including NDP52, Optineurin, p62, TAX1BP1, Galectin 8, and TECPR1[90]. Xenophagy 
has been shown to restrict or avoid the intracellular persistence and the replication of 
various human pathogenic or pathosymbiotic bacteria, residing either in damaged 
vacuoles [e.g., Salmonella Typhimurium or adherent-invasive Escherichia coli (AIEC)] or 
free in the host cytosol (Group A Streptococcus)[91-93]. Thus, by limiting the dissem-
ination of invasive pathogens from the gut lumen to extra-intestinal sites, autophagy 
also restrains their persistency in the gut microbiota[94,95]. Defects in xenophagy are 
thought to contribute to the etiology of Crohn’s disease (CD) an inflammatory bowel 
disease (IBD) characterized by chronic and severe intestinal inflammation associated 
with dysbiosis[96]. In particular, a coding polymorphism (Thr300Ala) in the 
autophagy-related gene ATG16L1 that confers an increased risk for the development of 
CD has been shown in vitro and in vivo to alter the xenophagy process, thus favoring 
persistency of the CD-associated AIEC bacteria[92,97,98]. CD risk polymorphisms 
have also been identified in other autophagy-related genes, including core autophagy 
genes (IRGM, ULK1, ATG4a, and ATG4d) and genes involved more specifically in 
xenophagy (NOD2 and NDP52)[99-101].

One important point is that, besides xenophagy, non-canonical autophagy such as 
LC3-associated phagocytosis (LAP) can also contribute to the clearance of intracellular 
pathogens. This specific form of phagocytosis requires an important set of core 
autophagy proteins (UVRAG, BECN1, VPS34, LC3, ATG3, ATG4, ATG5, ATG7, 
ATG12, and ATG16L1), but some other proteins involved in canonical autophagy 
remain dispensable (ATG14, ULK1, FIP200, and AMBRA1). LAP also distinguishes 
from canonical autophagy by the formation of single-membrane vacuoles called 
LAPosomes[102]. Efficiency of LAP to increase clearance of pathogens such as Listeria 

monocytogenes or Aspergillus fumigatus has been shown[103,104].

Mucus layer maintenance
A mucus layer composed of highly glycosylated proteins (mucins) overlays the gut 
epithelium and represents an important physical barrier limiting the contact of 
luminal microbes with the epithelium, thus avoiding their potential translocation into 
underlying tissues[105]. The mucus layer differs between the small and large intestine 
in terms of physicochemical properties (e.g., thickness, density, and composition) and 
it is under the influence of numerous factors, including the gut microbiota and the diet
[106-108]. Whereas in the small intestine the mucus is non-attached and constitutes a 
discontinuous layer, it is organized in two layers - the inner and outer mucus layers - 
in the large intestine. Compared to the intestinal lumen, only few bacterial species are 
able to live and to persist in the mucus layer. This is partly due to the important 
amount of various antimicrobial compounds (e.g., IgA, lysozyme, defensins, REG3γ, 
and phospholipase A2-IIA) found in the mucus layer, particularly in the small 
intestine. However, some commensal bacteria are molecularly equipped to bind, 
degrade the mucus glycans, and/or harvest the oligosaccharides, giving them a 
selective advantage in colonizing this particular ecological niche[109]. Among others, 
mucin-degrading specialists include species belonging to the genera Bacteroides (e.g., B. 

thetaiotaomicron and B. fragilis), Ruminococcus (e.g., R. gnavus and R. torques), and 
Akkermansia (e.g., A. muciniphila). Interestingly, A. muciniphila, a bacterial species 
belonging to the phylum Verrucomicrobia, is considered as a healthy marker of the 
intestine since its presence in high abundance is associated with a healthy mucosa 
whereas reduction of its abundance is associated with intestinal disorders (e.g., obesity 
and IBD)[110,111]. Studies suggest that the composition of mucus-associated 
microbiota differs depending on the intestinal segment or the mucus layer (outer or 
inner layer) that is considered[105]. Bacteria belonging to the phylum Firmicutes have 
been found in higher abundance in the mucus layer than Bacteroidetes, both in 
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humans and in rodents[105].
Mucus plays a critical role in the maintenance of the symbiotic relationship between 

the host and the gut microbiota[112]. Deletion of the Muc2 gene in mice results in 
changes in the gut microbiota composition characterized in particular by an increase in 
the abundance of potential pathobionts (e.g., Desulfovibrio, Escherichia, and Erysipelo-

trichaceae), and the reduction of beneficial bacteria (e.g., Lactobacilli) and Lachnospiraceae

[112]. In addition to ensuring an habitat and energy sources for a specific part of the 
gut microbiota, the mucus constitutes a protective layer against pathogen invasion and 
infection, although some pathogenic bacteria have developed efficient strategies to 
colonize this special environment and reach the intestinal epithelium (e.g., Shigella 

flexneri and AIEC)[113,114]. Thus, modifications in mucus layer structure or 
composition by genetic and environmental factors, such as diet, can modify the gut 
microbiota[105]. These changes can be beneficial when they strengthen the mucus 
barrier properties, but they can also be deleterious by favoring emergence of 
pathobionts, by bringing harmful bacteria closer to the epithelial barrier and by 
destabilizing the symbiotic relationship between the gut microbiota and the host, at 
the gut mucosa as well as at systemic levels[107].

Mucus secretion into the gut lumen is achieved by specialized secretory cells, the 
goblet cells. Mucins, the proteins forming the mucus, are packed into secretory 
granules that are localized on the apical side of the goblet cells and constitutively 
secreted by fusion of the granules with the plasma membrane. Proteins belonging to 
the core autophagy machinery (ATG5, ATG7, and LC3B) are critical in mice for the 
release of these secretory granules by supporting the generation of reactive oxygen 
species[115].

The NLRP6 inflammasome has been identified, among others roles, as a key factor 
involved in autophagy-induced regulation of goblet cell secretory functions[116,117]. 
NLRP6-deficient mice exhibit defective autophagy in intestinal cells including in 
goblet cells, a phenotype that is associated with impaired mucus layer formation. This 
mucus alteration may contribute, together with the other NLRP6-related defects, to 
modulating the composition of the gut microbiota and abnormally bring microbes 
closer to the epithelial barrier in NLRP6-deficient mice. Analyses of the gut microbiota 
in NLRP6-deficient mice revealed an abnormal representation of the bacterial phyla 
Bacteroidetes (Prevotellaceae) and Saccharibacteria (formerly known as TM7)[116]. In 
addition, alteration of the mucus layer in NLRP6-deficient mice enables Citrobacter 

rodentium, a mouse-specific pathogen, to penetrate deeper into the crypts and be more 
invasive[117]. The role of autophagy in shaping the gut microbiota through the 
regulation of mucus layer maintenance is also supported by observations made in 
Atg7-deficient mice. Secretion of mucins from goblet cells was diminished in colonic-
epithelial cell-specific Atg7 knock-out mice[82]. This phenotype was associated with an 
abnormal composition of the gut microbiota characterized in particular by an 
increased abundance of Clostridia and Prevotellaceae in Atg7-deficient mice. In addition, 
those authors observed an increased bacterial burden in the colon, a phenotype that 
could contribute to the exacerbated sensitivity to experimental colitis observed in Atg7 
knock-out mice. Interestingly, stimulation of the autophagy-related process, either by a 
beneficial bacterial strain (Bifidobacterium dentium) or by a polyphenol (oxyresveratrol), 
has been shown to enhance mucin production by goblet cells in in vivo and in vitro 

models[118,119].

Secretion of antimicrobial compounds in the gut lumen
Autophagy and autophagy-related proteins can also affect the composition of the gut 
microbiota by regulating the secretion of some antimicrobial compounds released into 
the gut lumen by enterocytes, Paneth cells, or immune cells. Among them, immuno-
globulins of the A class (IgAs) are daily released in huge amount (several grams per 
day) into the gut lumen and shape the composition of the gut microbiota. Alterations 
of the gut microbial ecosystem have been reported in the absence of hypermutated 
intestinal IgA in mice with deficiency of activation-induced cytidine deaminase[120-
122]. Changes in the gut microbiota were particularly characterized by expansion of 
anaerobic bacteria in the small intestine, with a domination by segmented filamentous 
bacteria[121]. Several other studies in mouse models support the role of IgAs in 
regulating the diversity and composition of microbiota[123,124]. Data obtained in 
humans showed that selective IgA-deficiency (sIgAd) is associated with a mild 
intestinal dysbiosis, characterized by expansion of pro-inflammatory bacteria (e.g., E. 

coli, Prevotella), reduction of anti-inflammatory commensals (e.g., Faecalibacterium), and 
perturbation of bacterial dependency association network[125]. In addition, Catanzaro 
and colleagues reported also a trend toward a decreased alpha diversity and shifts in 
the relative abundance of some taxa (e.g., increase in Eubacterium dolichum and Rumino-
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coccus bromii and decrease in Paraprevotellaceae) in human sIgAd subjects compared to 
controls[126]. IgAs are produced by gut-resident antibody-secreting plasma cells (PCs) 
that display important metabolic adaptations and endoplasmic reticulum expansion to 
cope with the stress of producing very large amounts of IgAs[127]. Some studies 
suggest that autophagy is required for sustainable production of immunoglobulins by 
PCs since mice with conditional deficiency of Atg5 in B cells had defective antibody 
responses, with an increased sensitivity of PCs to cell death[128]. In addition, mice 
deficient for Atg5 in B cells harbored a decreased number of IgA-secreting PCs isolated 
from the gut-associated lamina propria, Peyer’s patches, and mesenteric lymph nodes 
in comparison to control mice[129].

Another important antimicrobial compound to which commensal bacteria are 
directly exposed in the gut lumen is the lysozyme secreted by Paneth cells, which are 
secretory epithelial cells located at the bottom of the crypts in the small intestine. This 
antimicrobial protein is also produced by macrophages and neutrophils in the lamina 
propria. Three types of lysozyme have been described so far across the animal 
kingdom[130]. Lysozyme causes bacterial lysis by hydrolyzing bacterial cell wall PGN, 
but it can also induce cationic killing of bacteria by inserting into and forming pores 
into the lipid bilayer of the bacterial cell membrane. This is the case with c-type 
lysozyme expressed in human[130]. Not all bacteria are equally sensitive to lysozyme 
and some pathogenic bacteria have developed strategies to escape its antimicrobial 
activity[130]. The contribution of lysozyme in shaping the gut microbiota is illustrated 
by the dysbiosis observed in lysozyme-deficient mice (Lyz1−/− mice) that is charac-
terized by the expansion of some mucolytic bacteria such as Blautia gnavus (formerly 
known as Ruminococcus gnavus)[130,131]. No change in luminal bacterial load and 
alpha-diversity was observed in the cecum- and mucosal-associated bacteria in the 
ileum and the colon of Lyz1−/− mice[131]. However, changes occurred in the 
composition of the fecal microbiota (expansion of Dorea formicigenerans and reduction 
of Candidatus Arthromitus) as well as the ileal microbiota (expansion of B. gnavus and 

D. formicigenerans and reduction of C.  Arthromitus) in Lyz1−/− mice[131].
Alpha-defensins (also called crypt defensins or cryptdins) are another example of 

antimicrobial factors that are produced by Paneth cells, whose roles in host defense 
against enteric pathogens and regulation of the composition of the gut indigenous 
microbiota have been described[132]. Interestingly, abnormal packaging and secretion 
of antimicrobial compounds by Paneth cells have been reported in mice harboring 
Paneth cells deficient for the autophagy-related genes Atg5, Atg7, and Atg16l1 and in 
patients with CD-associated NOD2 and ATG16L1 variants[133-135]. Of note, this 
defect in lysozyme packaging in autophagy-deficient mice required an infectious (viral 
or bacterial) trigger[136,137].

Even if canonical autophagy is considered as a degradative process, some infectious 
agents such as Salmonella Typhimurium can trigger a secretory autophagy resulting in 
the formation of LC3-positive, double-membraned lysozyme granules[136]. These 
autophagosome-like vacuoles are not directed for the fusion with the lysosomes but 
instead reach the plasma membrane for the release of their content into the gut lumen. 
Thus, the autophagy machinery participates in the unconventional protein secretion of 
lysozyme, thereby affecting the composition of the gut microbiota by counter-selecting 
the lysozyme-sensitive bacteria. In this context, it has been suggested that vitamin D, 
via binding to the vitamin D receptor expressed by Paneth cells, can sustain autophagy 
activities in these cells[138]. To note, several studies suggest that expression and 
secretion of other antimicrobial peptides than lyzozyme, such as the defensins and 
cathelicidins, would be regulated by autophagy. However, the exact molecular 
mechanisms remain to be determined[82,139].

Modulation of inflammation
Cell stimulation by microorganisms (e.g., invasive pathogens) or danger signals (e.g., 
extracellular ATP, uric acid, or HMGB1) are usually associated with the triggering of 
inflammatory processes through the release of cytokines and chemokines. Inflam-
mation is a protective response that results in tissue repair. However, this response 
needs to be tightly regulated in order to avoid excessive and/or chronic inflammation 
that could be detrimental for host tissues. In the gut mucosa, immune tolerance toward 
the resident gut microbiota should be maintained to avoid chronic gut inflammation 
and sustain homeostasis[140]. Unbalanced inflammatory responses can also alter the 
gut microbiota as shown in mouse models of colitis that mimic human IBD, in which 
inflammation induces microbial dysbiosis[141,142]. Chronic inflammatory state was 
also suggested to contribute to dysbiosis in IBD patients[143]. This inflammation-
driven bacterial dysbiosis is commonly characterized by an overall decrease in 
bacterial diversity, especially in Firmicutes (Clostridium groups) and an overgrowth of 



Lapaquette P et al. Microbiota and autophagy

WJG https://www.wjgnet.com 8293 December 28, 2021 Volume 27 Issue 48

species belonging to Enterobacteriaceae[143,144].
Autophagy machinery and autophagy-related proteins are key contributors to the 

regulation of the inflammatory processes. Thus, one could assume that modulation of 
inflammation by autophagy could influence the composition of the gut microbiota. 
Autophagy is usually considered as an anti-inflammatory process, particularly since it 
controls activation of inflammasomes that are multimeric protein complexes involved 
in the maturation of pro-inflammatory cytokines[145]. Mice deficient for Atg16l1 in 
haematopoietic cells have been shown to be highly sensitive to chemically-induced 
colitis and produce increased levels of IL-1β and IL-18, two cytokines processed by 
inflammasomes[146]. Atg16l1-deficient macrophages that were stimulated by LPS also 
produced higher amounts of these cytokines compared to wild-type macrophages. 
Autophagy can alleviate activation of inflammasomes, at least by removing stimuli 
that induced them (e.g., intracellular infectious agents) and by degrading some inflam-
masome components (e.g., NLRP1, NLRP3, AIM2, or pro-CASP1)[147]. Interestingly, 
alterations of the gut microbiota (e.g., increased abundance of Bacteroidetes) as well as 
enhancement of the local Th1 and Th17 immune responses have been reported in mice 
with dextran sodium sulfate (DSS) colitis that express the CD risk allele ATG16L1 
T300A - a genetic context known to impair some autophagy-related functions - 
compared to DSS-treated wild-type mice[81]. Similar observations have been made in 
gnotobiotic mice expressing the CD risk allele ATG16L1 T300A and inoculated with 
human stools from active CD patients[81]. These data illustrated how a subtle 
polymorphism in an autophagy-related gene could deeply impact the equilibrium 
between immune responses and the gut microbiota.

Autophagy is also able to modulate signaling of interferons, notably by degrading 
key players of type-I interferon responses (e.g., RIG-I, STING, MDA5, IRF3, MAVS, 
and cGAS)[148]. Abnormal regulation of interferon signaling can lead to alterations of 
the gut microbiota as described in knock-out mice and viral infection models[149]. 
Interestingly, the gut microbiota has been described to stimulate intestinal autophagy 
via the induction of the type-II interferon, and this microbiota-mediated activation of 
autophagy has been shown to protect the host against infection by the protozoan 
parasite Toxoplasma gondii by limiting the deleterious production of the pro-inflam-
matory cytokine TNF-α[150]. Autophagy has also been described to limit the 
production and the secretion of various cytokines including TNF-α, IL-1β, IL-23, IL-6, 
TGF-β, and MIF[151,152]. However, the molecular mechanisms by which autophagy 
regulates their expression remain elusive. In many cases, autophagy reduces secretion 
of cytokines by simply alleviating cellular stress that triggers the inflammatory 
responses.

CONCLUSION
Given its crucial role in regulating homeostasis at both cell and tissue levels, it is not 
surprising that alterations of autophagy are connected to a large number of disorders (
e.g., IBD, cancers, and neurodegenerative diseases). To assume its various functions, 
autophagy activation is tightly regulated and the gut microbiota has recently emerged 
as a contributor in its regulatory networks in both the gut mucosa and other tissues. 
This advance in the understanding of the molecular mechanisms supporting this 
highly integrated cellular process that tip the balance between health and disease 
offers new opportunities to develop preventive or therapeutic tools. Indeed, the gut 
microbiota appears as a promising target to restore functional autophagy or to prevent 
its alterations in various disease conditions. The growing interest that was aroused 
from the discovery of such a hub position occupied by the gut microbiota in 
maintaining physical and mental health status has led to the conceptualization, 
development, and/or examination of various tools to manipulate the gut microbiota 
(probiotics, prebiotics, synbiotics, postbiotics, FMT, Crispr/Cas9, diet…). In the era of 
personalized medicine, such a toolbox could constitute a key element that could be 
integrated in the therapeutic strategies. However, further explorations of the interplay 
between the gut microbiota and autophagy are needed. Important advances have been 
made in understanding the local dialogue between the gut microbiota and autophagy 
at the level of the gut mucosa, but less is known about how and in which extent they 
communicate at the systemic level. Bi-directionality of the interactions between the gut 
microbiota and the autophagy network, plasticity and complexity of the gut 
microbiota and its multiple effects on host, as well as pleiotropy of the functions of 
autophagy are all factors that increase the level of complexity of the system. Better 
characterization of the cellular and molecular actors from both sides - the gut 
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microbiota and autophagy - that contribute and regulate the framework of their 
interactions to maintain homeostasis constitutes a prerequisite to propose new 
preventive and therapeutic tools in pathological conditions associated with dysbiosis 
and/or autophagy dysfunction.
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